Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors.


  • Publication date : 2017-03-04

Reference

Morin-Doré L, Blondin P, Vigneault C, Grand FX, Labrecque R, Sirard MA. Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors. Theriogenology. 2017;93:111-123. doi: 10.1016/j.theriogenology.2017.01.005. PubMed PMID: 28257859.

Additional information

Lien vers PubMed

Abstract

Assisted reproduction technologies (ART) and high selection pressure in the dairy industry are leading towards the use of younger females for reproduction, thereby reducing the interval between generations. This situation may have a negative impact on embryo quality, thus reducing the success rate of the procedures. This study aimed to document the effects of oocyte donor age on embryo quality, at the transcriptomic level, in order to characterize the effects of using young females for reproduction purpose. Young Holstein heifers (n = 10) were used at three different ages for ovarian stimulation protocols and oocyte collections (at 8, 11 and 14 months). All of the oocytes were fertilized in vitro with the semen of one adult bull, generating three lots of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used for the assessment of gene expression patterns at the blastocyst stage. Embryos from animals at 8 vs 14 months and at 11 vs 14 months were used for microarray hybridization. Validation was done by performing RT-qPCR on seven candidate genes. Age-related contrast analysis (8 vs 14 mo and 11 vs 14 mo) identified 242 differentially expressed genes (DEGs) for the first contrast, and 296 for the second. The analysis of the molecular and biological functions of the DEGs suggests a metabolic cause to explain the differences that are observed between embryos from immature and adult subjects. The mTOR and PPAR signaling pathways, as well as the NRF2-mediated oxidative stress response pathways were among the gene expression pathways affected by donor age. In conclusion, the main differences between embryos produced at peri-pubertal ages are related to metabolic conditions resulting in a higher impact of in vitro conditions on blastocyts from younger heifers.


Back