Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls.


  • Date de publication : 2017-10-16

Référence

Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard MA. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2017;106:21-29. doi: 10.1016/j.theriogenology.2017.10.006. PubMed PMID: 29031946.

Information Complémentaire

Lien vers PubMed

Résumé

In the dairy industry, using semen as soon as the bull is mature enough to produce it is advantageous for breeding purposes. Mammalian spermatogenesis is a hormone-dependent developmental program in which a complex cascade of events must take place to ensure that germ cells reach the proper stage of development at the proper time. Conventional indicators of semen quality such as sperm cell motility and viability usually improve as bulls mature, meeting quality criteria satisfactorily at around 16 months. Using semen before that age may affect embryo viability, but other changes occurring during the peripubertal period should be considered. Although it is known that establishment of these patterns begins during foetal life, the extent to which sperm cell DNA methylation changes during puberty has not been studied. The aim of this study is to correlate the age of a young bull with the overall DNA methylation pattern of its spermatozoa. Spermatozoa were collected from bulls at the ages of 10 months (early pubertal), 12 months (late pubertal) and 16 months (pubertal). Each animal (n = 4) was compared to itself with 16 months as control. Genome-wide DNA methylation was analyzed by microarray using the EmbryoGENE DNA Methylation Analysis platform. Using a fold change over 1.5 and a 5% FDR p-value correction, a total of 2602 differently methylated regions were found in common between 10 months of age and 16 months of age. No differently methylated regions between 12 months and 16 months of age were found at the same level of statistical significance. We conclude that spermatozoa from bulls aged 10 months have a different epigenetic profile, which could compromise their value.