Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes.


  • Publication date : 2014-10-16

Reference

Bunel A, Nivet AL, Blondin P, Vigneault C, Richard FJ, Sirard MA. Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes. Reprod. Fertil. Dev. 2014;26:855-65. doi: 10.1071/RD13061. PubMed PMID: 23827322.

Additional information

Lien vers PubMed

Keywords

animals blastocyst cattle cells, cultured cumulus cells embryonic development female follicular phase gene expression gene expression profiling microarray analysis oocytes oogenesis

Abstract

The final days before ovulation impact significantly on follicular function and oocyte quality. This study investigated the cumulus cell (CC) transcriptomic changes during the oocyte developmental competence acquisition period. Six dairy cows were used for 24 oocyte collections and received FSH twice daily over 3 days, followed by FSH withdrawal for 20, 44, 68 and 92 h in four different oestrous cycles for each of the six cows. Half of the cumulus-oocyte complexes were subjected to in vitro maturation, fertilisation and culture to assess blastocyst rate. The other half of the CC underwent microarray analysis (n=3 cows, 12 oocyte collections) and qRT-PCR (n=3 other cows, 12 oocyte collections). According to blastocyst rates, 20 h of FSH withdrawal led to under-differentiated follicles (49%), 44 and 68 h to the most competent follicles (71% and 61%) and 92 h to over-differentiated ones (51%). Ten genes, from the gene lists corresponding to the three different follicular states, were subjected to qRT-PCR. Interestingly, CYP11A1 and NSDHL gene expression profiles reflected the blastocyst rate. However most genes were associated with the over-differentiated status: GATM, MAN1A1, VNN1 and NRP1. The early period of FSH withdrawal has a minimal effect on cumulus gene expression, whereas the longest period has a very significant one and indicates the beginning of the atresia process.