Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis.


  • Date de publication : 2016-06-22

Référence

Labrecque R, Fournier E, Sirard MA. Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Mol. Reprod. Dev. 2016;83:558-69. doi: 10.1002/mrd.22651. PubMed PMID: 27127921.

Information Complémentaire

Lien vers PubMed

Résumé

Follicle size is recognized as a predictor of the potential for the enclosed oocyte to yield an embryo following in vitro maturation and in vitro fertilization. Oocytes from larger follicles are more likely to reach the blastocyst stage than those from smaller follicles. A growing oocyte accumulates all the transcripts needed to ensure development until the maternal embryonic transition, and this accumulation must be completed before the period of transcriptional arrest. Accordingly, the transcriptomes of bovine germinal-vesicle-stage oocytes collected from follicles of increasing sizes (3, 3-5, >5-8, and >8 mm) were evaluated, using the EmbryoGENE bovine transcriptomic platform (custom Agilent 4 × 44 K), to better understand transcriptional modulation in the oocyte as the follicle becomes larger. Microarray analyses revealed very few differences between oocytes from small follicles (<3 vs. 3-5 mm), whereas an important number of differences were detected at the mRNA level between oocytes from larger follicles. Weighted gene correlation network analysis allowed for the identification of several hub genes involved in crucial functions such as transcriptional regulation (TAF2), chromatin remodeling (PPP1CB), energy production (SLC25A31), as well as transport of key molecules within the cell (NAGPA, CYHR1, and SLC3A12). The results presented here thus reinforce the hypothesis that developmental competence acquisition cannot be seen as a simple one-step process, especially in regards to the modulation of mRNA. Mol. Reprod. Dev. 83: 558-569, 2016. © 2016 Wiley Periodicals, Inc.