Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation.


  • Date de publication : 2016-01-22

Référence

Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HA, Gagné D, Sirard MA, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation. Biol. Reprod. 2016;94:16. doi: 10.1095/biolreprod.114.127571. PubMed PMID: 26586844.

Information Complémentaire

Lien vers PubMed

Mot(s) Clé(s)

animals cattle cumulus cells female fertility gene expression regulation genomic library germ cells meiosis oocytes oogenesis ovarian follicle polyribosomes rna

Résumé

So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and the gamete. Secreted factors induce cellular responses in the follicular cells, and direct exchange of small molecules from the cumulus cells to the oocyte through gap junctions controls meiotic arrest. Studying the interconnection between the cumulus cells and the oocyte, we previously demonstrated that the somatic cells also contribute transcripts to the gamete. Here, we show that these transcripts can be visualized moving down the transzonal projections (TZPs) to the oocyte, and that a time course analysis revealed progressive RNA accumulation in the TZPs, indicating that RNA transfer occurs before the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes, revealed transcripts common to all three fractions, suggesting the use of transferred transcripts for translation. Furthermore, the removal of potential RNA trafficking by stripping the cumulus cells caused a significant reduction in maturation rates, indicating the need for the cumulus cell RNA transfer to the oocyte. These results offer a new perspective to the determinants of oocyte quality and female fertility, as well as provide insight that may eventually be used to improve in vitro maturation conditions.