Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period.

  • Date de publication : 2011-01-18


Gilbert I, Robert C, Dieleman S, Blondin P, Sirard MA. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction. 2011;141:193-205. doi: 10.1530/REP-10-0381. PubMed PMID: 21123518.

Information Complémentaire

Lien vers PubMed

Mot(s) Clé(s)

animals biomarkers cattle corpus luteum female gene expression profiling gene expression regulation granulosa cells luteinization luteinizing hormone oligonucleotide array sequence analysis ovulation rna, messenger reverse transcriptase polymerase chain reaction


The LH surge induces a multitude of events that are essential for ovulation and corpus luteum formation. The transcriptional responses to the LH surge of preovulatory granulosa cells (GCs) are complex and still poorly understood. In this study, a genome-wide bovine oligo array was used to determine how the gene expression profile of GCs is modulated by the LH surge. GCs from three different stages were used to assess the short- and long-term effects of this hormone on follicle differentiation: 1) 2 h before induction of the LH surge, 2) 6 h and 3) 22 h after the LH surge. The results obtained were a list of differentially expressed transcripts for each GC group. To provide a comprehensive understanding of the processes at play, biological annotations were used to reveal the different functions of transcripts, confirming that the LH surge acts in a temporal manner. The pre-LH group is involved in typical tasks such as cell division, development, and proliferation, while the early response to the LH surge included features such as response to stimulus, vascularization, and lipid synthesis, which are indicative of cells preparing for ovulation. The late response of GCs revealed terms associated with protein localization and intracellular transport, corresponding to the future secretion task that will be required for the transformation of GCs into corpus luteum. Overall, results described in this study provide new insights into the different transcriptional steps that GCs go through during ovulation and before luteinization.